UNITED STATES NAVAL POSTGRADUATE SCHOOL

AN ELEMENTARY DERIVATION OF THE PRINCIPAL EFFECTS OF THE OBLATENESS OF THE EARTH UPON THE ORBITS OF SATELLITES

John E. Brock

27 April 1967

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral E. J. O'Donnell, USN
Superintendent
R. F. Rinehart
Academic Dean

ABSTRACT:

General formulas for the first-order effects of the oblateness of the Earth upon the orbits of satellites were reported in 1957 by R. E. Roberson and D. G. King-Hele. Their derivations employed methods which are unfamiliar to those not having studied the mathematics of astronomy. In this Technical Report / Research Paper No. 76, an elementary derivation is given for these useful and important results.

PRESENTATION:

This paper will be presented 26 May 1967 at the Canadian Congress of Applied Mechanics, Quebec.
-

An Elementary Derivation of the Principal Effects of the Oblateness of the Earth upon the Orbits of Satellites

by
John E. Brock
Professor of Mechanical Engineering,
Naval Postgraduate School
Monterey, California

Independently of each other, in 1957 R. E. Roberson in the United States and D. King-Hele in Great Britain provided general formulas giving the first order effects of the oblateness of the Earth upon satellite orbits, previous analyses by others having contained inconvenient restrictions. Roberson and King-Hele obtained their results by the use of methods which are familiar to those who are trained in the mathematics of Astronomy but not familiar to those having only the usual training in Engineering Mechanics, who, accordingly, do not have easy access to these useful and important results.

In the present paper these results are derived by a quite elementary procedure requiring nothing more than elementary geometry, vector algebra, and mechanics. An appendix considers a few simplified models of the Earth which have the same first order effects as does an oblate Earth. This material should be of interest to engineers engaged in the space effort as a means of understanding the primary perturbations which result from oblateness.

A complete table of notation is given in Appendix B. This table is not arranged alphabetically, however, since so many of the definitions of the quantities depend on others in the list. Instead the arrangement is in "operational sequence", that is, in the order
in which the symbols logically occur in the development. The notation agrees generallywith that used in astronautical literature; for example, V means geopotential, v means true anomaly, and V denotes satellite (vector) velocity.

First we establish some coordinate systems. 0 is the mass center of the Earth and n is a unit vector parallel to the axis of rotation of the Earth pointing North. a and b are fixed unit vectors in the Earth's equatorial plane so as to form a right handed cartesian system a, b, n; actually, of course, because of the precession of the equinoxes and other slow motions, these vectors are not truly fixed, but we may regard them as being fixed for the purposes of this analysis. We could take a to be in the direction of the projection upon the Earth's equatorial plane of the line from 0 to the first point of Aires, but there seems to be no uniformity in this matter. We observe that conventionally the orbits of Earth satellites are referred to the Earth's equatorial plane in the same way that planetary orbits are referred to the plane of the ecliptic, but there does not seem to be perfect uniformity with regard to a reference position for longitude such as that provided by the first point of Aires.

Let ? be the instantaneous position of the satellite, with $r=$ $\overrightarrow{0} \mathbf{a}$ and $v=\dot{r}$, the dot denoting differentiation with respect to time. We define the scalar coordinates of satellite position by the equations

$$
x=r \cdot a, \quad y=r \cdot b, \quad z=r \cdot n \quad[1 a, b, c]
$$

so that

$$
\begin{equation*}
r=x a+y b+z n \tag{2}
\end{equation*}
$$

The geopotential for an oblate Earth (see Appendix A) may be approximated by the expression

$$
\begin{equation*}
V=-\mu r^{-1}\left[1+J r^{-2}\left(1-3 z^{2} r^{-2}\right) / 3\right] \tag{3}
\end{equation*}
$$

where $\mu=G M_{B}$ is the product of the universal constant of gravitation by the mass of the Earth, J is the coefficient of the second zonal harmonic, and $r=\sqrt{r \cdot r}$. An approximate numerical value for μ is 9.66×10^{4} (statute miles) ${ }^{3}$ (seconds) ${ }^{-2}$. At the surface of the Earth, at the equator where $r=3964$ statute miles, the product Jr^{-2} has the value 1.623×10^{-3} (dimensionless). Thus, evidently, for an Earth satellite, the second term in the square brackets in Eq. [3] is much smaller than unity. For a further discussion of Eq. [3], see Appendix A.

The force, per unit mass of satellite, exerted on the satellite by the gravitational attraction of the Earth is

$$
\begin{equation*}
f=-\operatorname{grad} V=-a \frac{\partial V}{\partial x}-b \frac{\partial V}{\partial y}-n \frac{\partial V}{\partial z} \tag{4}
\end{equation*}
$$

and to evaluate this expression, we note first that $r^{2}=x^{2}+y^{2}+z^{2}$ so that

$$
\begin{align*}
\frac{\partial r^{\mathrm{n}}}{\partial x} & =\frac{\mathrm{d} r^{\mathrm{n}}}{\mathrm{~d} r^{2}} \cdot \frac{\partial r^{2}}{\partial x}=\frac{\mathrm{d}\left(r^{2}\right)^{\mathrm{n} / 2}}{\mathrm{~d} r^{2}} \cdot \frac{\partial r^{2}}{\partial x} \\
& =(n / 2)\left(r^{2}\right)^{n / 2-1}(2 x)=n x r^{\mathrm{n}-2} \tag{5}
\end{align*}
$$

with similar formulas in which y and s replace x. Thus

$$
\begin{aligned}
f= & \mu \operatorname{grad}\left[r^{-1}+J r^{-3} / 3-J z^{2} r^{-5}\right] \\
= & \mu\left[\left(-x r^{-3}-J x r^{-5}+5 J x z^{2} r^{-7}\right) a+\right. \\
& \left(-y r^{-3}-J y r^{-5}+5 J y z^{2} r^{-7}\right) b+ \\
& \left.\left(-z r^{-3}-J z r^{-5}+5 J z z^{2} r^{-7}-2 J z r^{-5}\right) n\right]
\end{aligned}
$$

and by using Eq. [2] this may be more briefly written as

$$
\begin{align*}
f & =-\mu r^{-3} r-J \mu r^{-5} r\left(1-5 z^{2} r^{-2}\right)-2 J \mu z r^{-5} n \\
& =-\mu r^{-2} e_{r}-\text { AJ }^{-5} e_{r}-\text { BJJn } \tag{6}
\end{align*}
$$

where $e_{r}=r / r$ is a unit vector parallel to r and

$$
\begin{equation*}
A=r^{-4}\left(1-5 z^{2} r^{-2}\right), \quad B=2 z r^{-5} \tag{7a,b}
\end{equation*}
$$

Note that if J were zero in Eq. [7], we would have the simple inverse square law of attraction toward the mass center of the Earth.

We now define h to be the angular momentum (with respect to 0) of a unit mass of satellite, i. e.,

$$
\begin{equation*}
h=r \times v \tag{8}
\end{equation*}
$$

Since

$$
v=\dot{r}=d\left(r e_{r}\right) / d t=\dot{r} e_{r}+r \dot{e}_{r}
$$

and since $e_{r} \dot{e}_{r}=0$, we have

$$
\begin{align*}
r \times h & =r \times(r \times v)=r \cdot v r-r \cdot r v=r^{2}\left(e_{r} \cdot v e_{r}-v\right) \\
& =r^{2}\left[(\dot{r}+0) e_{r}-\dot{r} e_{r}-r \dot{e}_{r}\right]=-r^{3} \dot{e}_{r} \tag{9}
\end{align*}
$$

We now use the fundamental principle of Mechanics that the rate of change of angular momentum (about 0 which we consider to be a fixed point since we are concerned with the motion of 0 relative to 0) is equal to the moment about 0 of the applied force; that is

$$
\begin{equation*}
\dot{h}=r \times f \tag{10}
\end{equation*}
$$

In the present case with only one moving particle, this formula is very easy to obtain from Eq. [8], from which

$$
\dot{h}=\dot{r} \times v+r \times \dot{v}=r \times \dot{v}=r \times f
$$

since \dot{v} is the acceleration which is equal to f, the force per unit mass.

Next, consider the expression $v \times h$. Taking the derivative with respect to time and using the notation $e_{h}=h / h$, where $h=\sqrt{h \cdot h}$, we have

$$
\frac{d}{d t}(v \times h)=\dot{v} \times h+v \times \dot{h}=f \times h+v \times(r \times f)
$$

$$
\begin{align*}
& =-\mu r^{-3} r \times h-J \mu\left(A e_{r}+B n\right) \times h+V \times[r \times(-B J \mu n)] \\
& =\mu \dot{e}_{r}+\mu J h\left[A e_{h} \times e_{r}+B e_{h} \times n+B h^{-1} v \times(n \times r)\right] \tag{11}
\end{align*}
$$

Integrating this expression with respect to time gives

$$
\begin{equation*}
v \times h=\mu\left(e_{r}+s\right) \tag{12}
\end{equation*}
$$

where S is a vector whose time-derivative satisfies

$$
\begin{equation*}
\dot{s}=J h\left[A e_{h} \times e_{r}+B e_{h} \times n+B h^{-1} v \times(n \times r)\right] \tag{13}
\end{equation*}
$$

Also, from Eq. [10] and Eq. [6],

$$
\begin{equation*}
\dot{h}=B J \mu n \times r \tag{14}
\end{equation*}
$$

Since we have seen, in Eq. [3], that the terms involving J are small compared to those not containing J , we regard J as a "small" quantity. Thus, Eq. [13] and Eq. [14] indicate that S and h are "nearly" constant vectors; that is, their magnitudes and orientations are but slowly changing.

Next, consider the scalar quantity

$$
\begin{align*}
r \cdot v \times h & =r \times v \cdot h=h^{2}=\mu(r+r \cdot s) \\
& =\mu r\left(1+e_{r} \cdot s\right)=\mu r(1+s \cos v) \tag{15}
\end{align*}
$$

where $s=\sqrt{3 \cdot 5}$ and $\cos v=e_{r} \cdot \mathrm{~s} / \mathrm{s} . \quad v$ is the angle, shown in Fig. 1 , which is known as the true anomaly. If we define the quantity

$$
\begin{equation*}
p=h^{2} \mu^{-1} \tag{16}
\end{equation*}
$$

which has the dimensions of a length, we may write

$$
\begin{equation*}
p=r(1+s \cos v) \tag{17}
\end{equation*}
$$

In Eq. [17] only r and v vary "rapidly", $\dot{p}=2 h \mu^{-1} \dot{h}$ and \dot{s} both involving J as a factor. Eq. [15] is that of an ellipse, called the instantaneous elliptical orbit (IEO), from which the actual orbit of the satellite begins to differ as time goes on. The point on this IEO (point P in Fig. 1) corresponding to $v=0$ is called the instantaneous
perigee point, toward which the unit vector $e_{s}=s / s$ points. Also, the eccentricity, s, of the IEO is called the instantaneous eccentricity. The angle $i(0 \leq i \leq \pi)$, satisfying $\cos i=n \cdot e_{h}$, is the (instantaneous) inclination of the orbit plane. A unit vector the direction $e_{h} \times n$, i. e., the vector $j=e_{h} \times n$ csc i, being perpendicular to both the plane of the IEO and the equatorial plane, thus points toward the descending node D (Fig. 1) of the former; $-j$ points toward the ascending node A. The angle $\omega=\angle A O P$ is called the argument of perigee. The quantity p is seen to be the semi-latus rectum of the IEO.

We will use the unit vector $i=j \times e_{h}$ such that i, j, e_{h} form a right handed triad, slowly changing in orientation since j and e_{h} are not constant. We let u and w be the angles $B O Q$ and $B O P$, respectively (Fig. 1) so that $\cos u=i \cdot e_{r}, \cos w=i \cdot e_{s}$. Note that $u=v+w$ and that w is "nearly" constant since the IEO changes only slowly. This implies that $\dot{u}=\dot{v}$, approximately, a result which will be used repeatedly. Note also that $\omega=w+\pi / 2$. We also introduce the unit vector $e_{\theta}=e_{h} \times e_{s}$ so that e_{s}, e_{θ}, e_{h} also form a slowly moving unit triad. Finally, we introduce the unit vector $I=j \times n$ so that I, j, n is a unit triad which rotates slowly about n. Thus, in particular, we have

$$
\begin{align*}
& i=I \cos i+n \sin i \tag{18}\\
& e_{r}=i \cos u+j \sin u \tag{19}
\end{align*}
$$

A little manipulation easily establishes the following relations.

$$
\begin{align*}
n \times r & =(-I \sin u+j \cos i \cos u) \tag{20}\\
z & =r e_{r} \cdot n=r \sin i \cos u \tag{21}
\end{align*}
$$

Now it is obvious that, to the approximation with which we are working, we have

$$
\begin{equation*}
\dot{e}_{r}=\dot{u} e_{h} x e_{r} \tag{22}
\end{equation*}
$$

but it is also easily possible to obtain this result formally as follows

$$
\begin{aligned}
\dot{e}_{r} & =\dot{i} \cos u+j \sin u-(i \sin u-j \cos u) \dot{u} \\
& =(j \cos u-i \sin u) \dot{u}
\end{aligned}
$$

since \dot{i} and \dot{j} nearly vanish. However,

$$
e_{h}{ }^{\times Q_{r}}=e_{h} \times j \sin u+e_{h} \times i \cos u=-i \sin u+j \cos u
$$

and Eq. [22] is established. From this we have

$$
\begin{align*}
& h=r \times \dot{r}=r \times\left(\dot{r} e_{r}+r \dot{u} e_{h} \times e_{r}\right)=r^{2} \dot{u} e_{r} \times\left(e_{h} \times e_{r}\right)=r^{2} \dot{u} e_{h} \\
& h=r^{2} \dot{u} \tag{22a}\\
& r^{-3}=r^{-1} h^{-1} \dot{u}=p^{-1} h^{-1} \dot{u}(1+s \cos v) \tag{23}
\end{align*}
$$

Substituting Eqs. [7b], [20], [21], and [23] into Eq. [14], expanding cos v $=\cos (u-w)$, and multiplying by $\mathrm{d} t$, we obtain

$$
\begin{gather*}
\mathrm{dh}=2 J_{\mu} p^{-1} h^{-1} \sin i(1+\operatorname{sos} u \cos w+\sin u \sin w) \\
\times\left(-I \sin u \cos u+j \cos i \cos ^{2} u\right) \mathrm{d} u \tag{24}
\end{gather*}
$$

It is elementary but tedious to obtain the indefinite integral of this expression and since the result of such an exercise does not seem to be of particular value, we will perform the integration for one complete passage only, as u increases by 2π, to obtain what we designate as Δh, the net change in h per passage. To do this most easily, note that for non-negative integers M, N

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin ^{M} x \cos ^{N} x d x=0 \tag{25}
\end{equation*}
$$

unless both M and N are even. We easily obtain

$$
\begin{equation*}
\Delta h=j J \mu \pi h^{-1} p^{-1} \sin 2 i \tag{26}
\end{equation*}
$$

Since $j \cdot e_{h}=0$, the variation, Δh, in the magnitude of h is of higher order in J. Thus we also have

$$
\begin{equation*}
\Delta e_{h}=j J \mu \pi h^{-2} p^{-1} \sin 2 i=j J \pi p^{-2} \sin 2 i \tag{27}
\end{equation*}
$$

using Eq. [16], and from the definition of j we have

$$
\Delta j=\Delta\left(e_{h} \times n \csc i\right)=\Delta e_{h} \times n \csc i+e_{h} \times n \Delta \csc i
$$

$$
\begin{equation*}
\Delta j=2 J \pi p^{-2} j \times n \cos i+j \Delta c s c i=2 J \pi p^{-2} I \cos i \tag{28}
\end{equation*}
$$

since evidently we must omit the term in j because $j \cdot j=1$. We may also see in another way that there is no j-component since the variation in i is of higher order in J, Ah being perpendicular to the plane in which angle i is measured. We observe that the line of nodes rotates (in a sense opposite to that of the satellite itself if $i<\pi / 2$) with mean angular velocity

$$
\begin{equation*}
B_{N}^{*}=-2 A J \pi P^{-2} P^{-1} \cos i \tag{29}
\end{equation*}
$$

where P is the orbital period, which differs only by a term of order J from the value

$$
\begin{equation*}
P=2 \pi a^{3 / 2} \mu^{-1 / 2} \tag{30}
\end{equation*}
$$

(a is the semimajor axis of ellipse) which would obtain if J were zero. We use the asterisk in this formula and later to indicate a mean value In the sense that we have indicated. Thus we can finally obtain the very important formula

$$
\begin{equation*}
B_{N}^{*}=-n C \cos i \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\left(g / r_{E}\right)^{1 / 2}\left(\mathrm{~J} / r_{E}^{2}\right)\left(r_{E} / a\right)^{7 / 2}\left(1-s^{2}\right)^{-2} \tag{32}
\end{equation*}
$$

in which r_{g} represents the equatorial radius of the earth and $g=\mu r_{E}^{-2}$ represents the acceleration of gravity at the surface. We have used the following relations

$$
\begin{aligned}
& 2 a=r_{(v=0)}+r_{(v=m)}=p /(1+s)+p /(1-s)=2 p /\left(1-s^{2}\right) \\
& 2 J \pi p^{-2} p^{-1}=J a^{-7 / 2}\left(1-s^{2}\right)^{-2}{ }_{\mu}^{1 / 2}=J a^{-7 / 2}\left(1-s^{2}\right)^{-2} g^{1 / 2} r_{B}^{-1}=\mathrm{C}
\end{aligned}
$$

Returning now to Eq. [13], we wish to express all vectors in terms of the (slowly moving) triad e_{8}, e_{θ}, e_{h}. We have

$$
\begin{array}{ll}
e_{r}=e_{s} \cos v+e_{\theta} \sin v ; \quad n=e_{h} \cos i+i \sin i \\
i=e_{s} \cos w-e_{\theta} \sin w ; \quad v=\dot{r}=\dot{r} e_{r}+\dot{\operatorname{ri}}{ }_{h} \times e_{r}
\end{array}
$$

It is now a matter of straightforward, if tedious, substitution into Eq. [13]. Some intermediate evaluations are shown below.

$$
\begin{aligned}
& e_{h} \times e_{r}=-e_{s} \sin v+e_{\theta} \cos v \\
& e_{h} \times n=e_{h} \times i \sin i=\sin i\left(e_{s} \sin w+e_{\theta} \cos w\right) \\
& n \times e_{r}=\left|\begin{array}{ccc}
e_{s} & e_{\theta} & e_{h} \\
\sin i \cos w & -\sin i \sin w & \cos i \\
\cos v & \sin v & 0
\end{array}\right| \\
& =-e_{s} \cos i \sin v+e_{\theta} \cos i \cos v+e_{h} \sin i \sin u \\
& v \times(n \times r)=\dot{r r e}_{r} \times\left(n \times e_{r}\right)+r^{2} \dot{u}\left(e_{h} \times e_{r}\right) \times\left(n \times e_{r}\right) \\
& =\dot{r}\left(e_{S} \sin i \sin u \sin v-e_{\theta} \sin i \sin u \cos v+e_{h} \cos i\right) \\
& +r^{2} \dot{u} \sin i \sin u\left(e_{s} \cos v+e_{\theta} \sin v\right)
\end{aligned}
$$

From Eq. [22a] we have $r^{2} \dot{u}=h$ and from Eq. [17] and Eq. [23] we get $r \dot{r}=r^{3} p^{-1} \operatorname{siv} \sin v=h s \sin v(1+s \cos v)^{-1}$. Thus we can write

$$
\begin{gathered}
v \times(n \times r)=(1+s \cos v)^{-1} h\left\{\sin i \sin u\left[e_{s}(s+\cos v)+e_{\theta} \sin v\right]\right. \\
\left.+e_{h} s \sin v \cos i\right\}
\end{gathered}
$$

We also note that we may write $J h r^{-4}=J p^{-2} \dot{v}(1+s \cos v)^{2}$ by using
Eq. [23] and Eq. [17] and the fact that $\dot{u}=\dot{v}$ approximately. Thus, upon substituting into Eq. [13], we find

$$
\begin{aligned}
\dot{\mathbf{s}}= & J p^{-2}(1+s \cos v)\left\{(1 - 5 \operatorname { s i n } ^ { 2 } i \operatorname { c o s } ^ { 2 } u) (1 + s \operatorname { c o s } v) \left(-e_{s} \sin v+\right.\right. \\
& \left.\mathbf{e}_{\theta} \cos v\right)+2(1+s \cos v) \sin ^{2} i \cos u\left(e_{s} \sin w+e_{\theta} \cos w\right)+ \\
& 2 \sin ^{2} i \sin u \cos u\left[e_{s}(s+\cos v)+\mathrm{e}_{\theta} \sin v\right]+ \\
& \left.\mathbf{e}_{\mathrm{h}} \sin 2 i \sin v \cos u\right\} \dot{v}
\end{aligned}
$$

Multiplying by $d t$ and expanding functions of u in terms of v and ω, w being regarded as constant, gives an expression for dS which
may be integrated for general v. However, it is the net change per period which is of greatest interest, and upon use of Eq. [25], we find that

$$
\begin{equation*}
\Delta s=J s \pi p^{-2}\left[\left(2-3 \sin ^{2} i\right) e_{\theta}-e_{h} \sin 2 i \sin w\right] \tag{33}
\end{equation*}
$$

Since $S \cdot \Delta S=0$, the variation of s is of higher order in J, and we have

$$
\begin{equation*}
\Delta e_{s}=J \pi p^{-2}\left[\left(2-3 \sin ^{2} i\right) e_{\theta}-e_{h} \sin 2 i \sin w\right] \tag{34}
\end{equation*}
$$

For the argument of perigee, we have

$$
\begin{aligned}
-\cos \omega & =j \cdot e_{s}=\sin w \\
-\cos (\omega+\Delta \omega) & =-\cos \omega+\Delta \omega \sin \omega \\
& =(j+\Delta j) \cdot\left(e_{s}+\Delta e_{s}\right) \\
& =j \cdot e_{s}+j \cdot \Delta e_{s}+\Delta j \cdot e_{s} \\
& =\sin w+J \pi p^{-2}\left(\left(2-3 \sin ^{2} i\right) j \cdot e_{\theta}+2 I \cdot e_{s} \cos i\right] \\
& =\sin w+J \pi p^{-2} \cos w\left(4-5 \sin ^{2} i\right)
\end{aligned}
$$

Since $\sin \omega=\cos \omega$, we clearly have

$$
\begin{equation*}
\Delta \bar{\omega}=J \pi p^{-2}\left(4-5 \sin ^{2} i\right) \tag{35}
\end{equation*}
$$

Dividing by P, the time of passage, we have

$$
\begin{equation*}
\dot{\omega}^{*}=(C / 2)\left(4-5 \sin ^{2} i\right) \tag{36}
\end{equation*}
$$

for the mean rate of change of argument of perigee. From Eq. [31] we see that

$$
\dot{\Omega}^{\star}=-C \cos i
$$

is the mean rate of change of the longitude of the ascending node. Combining this result with that of Eq. [36], we find that the mean rate of change of the longitude of perigee is

$$
\begin{equation*}
\stackrel{3}{\omega}^{*}=(C / 2)\left(4-5 \sin ^{2} i-2 \cos i\right) \tag{38}
\end{equation*}
$$

where $\tilde{\omega}$, the longitude of perigee, is the "angle" $\tilde{\omega}=\Omega+\omega$ measured in two different planes.

The result given in Eq. [36] is sometimes incorrectly referred to as the average rate of rotation of the line of apsides; strictly speaking it is simply the average rate of change of argument of perigee. The average rate
of rotation of the line of apsides really is simply

$$
P^{-1} \Delta e_{s}=(C / 2)\left[\left(2-3 \sin ^{2} i\right) e_{\theta}-e_{h} \sin 2 i \sin w\right]
$$

the magnitude of which is

$$
\begin{equation*}
B_{A}^{*}=(C / 2)\left[\left(2-3 \sin ^{2} i\right)^{2}+(\sin 2 i \sin w)^{2}\right]^{1 / 2} \tag{39}
\end{equation*}
$$

The difference between this result and the value given in Eq. [36] is known to astronomers as the difference between the draconitic and the inertial motion of the apsides (1).

It is of some interest to have a formula for the mean angular velocity of the e_{s}, e_{θ}, e_{h} triad. It is not difficult to show that this is given by the expression

$$
\begin{equation*}
\mathrm{B}_{\mathrm{Triad}}^{*}=(\mathrm{C} / 2)\left[\left(2-3 \sin ^{2} i\right) \mathbf{e}_{\mathrm{h}}-\mathbf{i} \sin 2 i\right] \tag{40}
\end{equation*}
$$

The results of principal interest are given by Equations [26] through
[40]. These equations or their equivalents seem to have been first obtained by R. E. Roberson (2) and by D. King-Hele (3). Both of them also discuss variations in the orbital period from the normal value

$$
P=2 \pi a^{3 / 2} \mu^{-1 / 2}
$$

but this analysis seems to be of a higher order of difficulty than that presented here. There are obvious practical difficulties in even defining an orbital period. It could, for example, refer to the successive passages through the perigee point (of the IEO determined at perigee), or it could refer to successive passages of the descending node. The analysis leading to Eq. [12] has been adapted from a recent popular textbook (4).

Grateful acknowledgment is made of helpful suggestions from
Dr. W. E. Bleick of the Naval Postgraduate School and from Dr. W. W.
King of Georgia Institute of Technology.

References

1. Geyling, F. T., April 6, 1965, private communication.
2. Roberson, R. E., 1957, J. Frank. Inst., 264', 181-202, 269-285.
3. King-Hele, D. G., 1958, Proc. Roy. Soc., Ser. A, 247 , No. 1248, 49-72.
4. Yeh, H, and Abrams, J. I., Princ. Mech. Solids Fluids, I, McGraw-Hil1 Book Co., Inc., 1960
5. Thomson, W., and Tait, P. G., 1879, Treatise on Natural Philosophy, Cambridge Univ. Press. (Reprinted 1962 by Dover Pubs., Inc., under the title Princ. of Mechanics and Dynomics), sections 494, 527.
6. Todhunter, I., 1873, Histony of the math. theories of attraction and the figure of the earth from the time of Newton to that of Laplace, Cambridge Univ. Press. (Reprinted by Dover Pubs., Inc.)

Appendix A.
Remarks about Eq. [3].

A large literature has been developed concerning the potential of various mass distributions. Much of it has been concerned with the problem of determining the potential at an exterior point of a homogeneous ellipsoid. This problem is surprisingly difficult, but if the figure is of revolution, the results can be expressed in elementary (even though quite complicated) terms. Among readily available treatments, that of Thomson and Tait (5) is quite readable even though it is quite old. In an editorial footnote added in 1912, H. Lamb refers to a history of the subject by Todhunter. The latter seems to have been reprinted recently, but the writer has not been able to find a copy (6).

However, the Earth is certainly not a homogeneous ellipsoid, and, indeed, the finer detalls of the mass distribution of the Earth are presently being revealed by sophisticated analysis of observations made on actual satellite orbits. Our purpose in this Appendix is merely to indicate the genesis of Eq. [3] and to present a very simple model which yields Eq. [3].

If 0 is the mass center of the mass distribution, ? the exterior point at which potential V is being evaluated, and T is the general location of mass element $d m$, we let r denote the distnce $O Q, \rho$ denote the distance OT, α denote the cosine of the angle QOT, and β denote the ratio ρ / r. It is well known then that the potential may be expressed in a series of integrals (over the mass distribution) of Legendre polynomials in α, viz.:

$$
V=-(G / r) \int \sum P_{n}(\alpha) B^{n} d m
$$

where the sum runs from zero to infinity and the symbol $\mathrm{P}_{\mathrm{n}}($) denotes the Legendre polynomial of degree n. If the body is homogeneous and nearly spherical, with principal moments of inertia I_{x}, I_{y}, and I_{z}, this may be developed as

$$
\mathrm{V}=(-\mu / r)\left\{1+\left(2 r^{2} M\right)^{-1}\left[I_{x}+I_{y}+I_{z}-3\left(a^{2} I_{x}+b^{2} I_{y}+c^{2} I_{z}\right)\right]+\ldots\right\}
$$

where a, h, and c are the direction cosines of line on with respect to the principal axes (through 0). If we take the z axis as northward, and consider an oblate spherical Earth with semimajor axis A and semiminor axis B, this becomes

$$
v=-\mu r^{-1}\left[1+\frac{A^{2}-B^{2}}{10 r^{2}}\left(1-3 z^{2} r^{-2}\right)+\ldots\right]
$$

and the coefficient J in Eq. [3] may be identified with the quantity $\left(A^{2}-B^{2}\right) / 10$. The deleted terms, indicated by... in the two preceding equations indicate terms of higher order in r^{-1}. However, since the Earth is not a homogeneous spheroid, the value of J carnot be calculated from a knowledge of $A=$ equatorial radius and $B=$ polar radius, but, instead, must be inferred from observed perturbations of satellite orbits. The forgoing has given an explanation of the source of Eq. [3] without, however, offering a model of the Earth from which Eq. [3] may be derived.

Another point of view is given in what follows. The oblateness of the Earth may be regarded as resulting in a deficiency of mass near the poles as compared to a homogeneous spherical Farth. Thus, we are led to consider a model composed of one positive point mass M located at 0 and two equal negative point masses ($-m$) located on the polar axis at equal distances d from 0 ; see Fig. 2. The potential V at Q is given by $-V / G=M r^{-1}-m r_{1}^{-1}-m r_{2}^{-1}$. Now $r^{2}=x^{2}+z^{2}$, so that we have

$$
\left(r_{1,2}\right)^{2}=x^{2}+(z \pm d)^{2}=r^{2} \pm 2 z d+d^{2}=r^{2}\left[1+r^{-2}\left(d^{2} \pm 2 z d\right)\right]
$$

where the upper (negative) sign refers to r_{j} and the lower (positive) sign refers to r_{2}. Combining these relations, we find

$$
\mathrm{V} r / \mathrm{G} m=-(11 / m)+2-(\mathrm{d} / r)^{2}\left(1-3 z^{2} / r^{2}\right)+\ldots
$$

plus terms involving higher powers of $(d / r)^{2}$. Since we propose to keep (d / r) quite small, we will be justified in neglecting them. Thus, writing $n=m / M$, a positive number, we have

$$
V=-G M r^{-1}(1-2 n)-n^{M} G d^{2} r^{-3}\left(1-3 z^{2} r^{-2}\right)+\ldots
$$

Now $M(1-2 n)=" 1-2 m=M_{E}$, the mass of the Earth, so that $M=" M_{E} /(1-? n)$. Thus, recalling that $\mu=G M E$, we have

$$
V=-\mu r^{-1}\left\{1+\left[n d^{2} /(1-2 n)\right] r^{-2}\left(1-3 z^{2} r^{-2}\right)+\ldots\right\}
$$

so that we identify $J / 3$ with the quantity $n d^{2} /(1-2 n)$. Thus

$$
5.41 \times 10^{-4}=\mathrm{Jr} r_{\mathrm{F}}^{-2} / 3=[n(1-2 n)]\left(d / r_{\mathrm{F}}\right)^{2}
$$

and

$$
\left(\lambda / r_{E}\right)^{2}=5.41 \times 10^{-4}\left(n^{-1}-2\right)
$$

There is, of course, no unique decomposition. If we take $n=1 / 3$, then $m=M_{\mathrm{E}}$ and $M=3 M_{\mathrm{E}}$, with $d=0.023 r_{\mathrm{E}}=92.3$ statute miles, and so on. The following tabulation gives a few such choices.

| $\frac{M / M_{E}}{101}$ | | $\frac{m / M_{E}}{50}$ | | $\frac{\left(d / r_{E}\right)^{2}}{1.08 \cdot 10^{-5}}$ |
| ---: | :---: | :---: | :---: | :---: | | d (miles) |
| :---: |
| 21 |

Since these values of $\left(d / r_{E}\right)^{2}$ are so small, then, a forteriori, values of (d / r) will be even smaller, where r is the distance from the center of the earth to a satellite: thus, truncation of the binomial series expansions of $\left(r_{1,2}\right)^{-1 / 2}$ is well justified and any of these models does a good job of representing
the Earth's actual potential field.

Appendix B.
List of Notations.

Except for the division into general catagories (general, noints, vectors, scalars), the listing is in the sequence that the symbols are introduced in the text rather than in alphabetical order.
A. General
Δ denotes net change (per orbit passage) of quantity following.

- $\frac{d}{d t}$ denotes differentiation with respect to time, t.
* emphasizes mean value over one orbit passage.
B. Points
$0=$ mass center of the Earth.
? $=$ position of satellite.
$P=$ perigee point of IEO.
$D=$ descending node of IEO.
$A=$ ascending node of IEO.
$B=$ point on orbit on vector \mathbf{i} extended.
$T=$ location of mass element $d m$.
C. Vectors

```
    n = unit North vector.
    a,b = fixed unit vectors in Earth's equatorial plane.
    r= vector On = position vector of satellite.
    v=\dot{r}= velocity of satellite
    f = attractive force per unit mass of satellite.
    e
```

```
h = r\timesv = angular momentum about 0 per unit mass of satellite.
e}\mp@subsup{h}{}{\prime}=h/h=\mathrm{ unit vector in direction of h.
s = vector satisfying Eq. [13].
e
j = e en \n csc i = unit vector from 0 toward D.
i = j\timese s}=\mathrm{ unit vector of triad i, j, e (.
e}\mp@subsup{e}{0}{}=\mp@subsup{e}{h}{}\times\mp@subsup{e}{S}{}=\mathrm{ unit vector of triad e 
I = j\timesn = unit vector of triad I, j, n.
B
B}\mp@subsup{T}{Triad}{*}=\mathrm{ mean angular velocity of e }\mp@subsup{e}{s}{},\mp@subsup{e}{0}{},\mp@subsup{e}{h}{}\mathrm{ triad.
```

D. Scalars; dimensionality is indicated following semicolon.

```
x = rea; L.
y = r.b; L.
z=r.n;L.
V = geopotential at point Q; L'T T - .
u=GME}\doteq9.66\times1\mp@subsup{0}{}{4}(\mathrm{ statute miles) }\mp@subsup{}{}{3}(\mathrm{ seconds) }\mp@subsup{)}{}{-2};\mp@subsup{L}{}{3}\mp@subsup{T}{}{-2}
G = coefficient of universal gravitation: L4 [ - - , T-4.
J = coefficient of second zonal harmonic of potential
    =1.623\times10 -3 reme 2 : L
r= \sqrt{}{r\cdotr}=\mathrm{ distance OQ:L.}.\quad\mathrm{ .}
A = r -4}(1-5\mp@subsup{z}{}{2}\mp@subsup{r}{}{-2});\mp@subsup{L}{}{-4}.\quad\mathrm{ Also, in Appendix A, letters
B = 2zrr
                                    A and B denote semi-axes of
                                    the Earth.
t = time; T.
h= \sqrt{}{h\cdoth}= magnitude of angular momentum per unit mass; L L T T - .
v = ~ t r u e ~ a n o m a l y , ~ a n g l e ~ P O Q ~ = ~ \operatorname { c o s } ^ { - 1 } ( e _ { S } \cdot e _ { r } ) ; ~ d i m e n s i o n l e s s . ~
p= h2 ' -1 = semi-1atus rectum of IFO; L.
s}=\sqrt{}{5\cdot5}= eccentricity of IEO; dimensionless
```

$i=$ inclination of $p l a n e$ of $I E O$ with respect to equatorial plane
$=\cos ^{-1}\left(n \cdot e_{h_{1}}\right)$: dimensionless.
$\omega=$ argument of perigee $=$ angle AOP; dimensionless.
$u=$ angle $B O O=\cos ^{-1}\left(\mathrm{i} \cdot \mathrm{e}_{\mathrm{r}}\right)$; dimensionless.
$\omega=$ angle $B O P=\cos ^{-1}\left(i \cdot e_{s}\right)$; dimensionless.
$a=$ semimajor axis of IEO; L.
$r=2 \pi a^{3 / 2} \mu^{-1 / 2}=$ period of orbital passage: $?$.
$C=\left(g / r_{E}\right)^{1 / 2}\left(T / r_{\Gamma}^{2}\right)\left(r_{E} /(1)^{7 / 2}\left(1-s^{2}\right)^{-2}\right.$
$=$ coefficient in several important results: T^{-1}.
$r_{\mathrm{F}}=$ radius of the Earth; I.
$a=\mu r_{\mathrm{E}}^{-2}=$ acceleration of gravity at surface of Earth; $L T^{-2}$.
$\dot{\omega}^{*}=$ mean rate of change of argument of perigee: T^{-1}.
$\dot{\Omega}^{*}=$ mean rate of change of longitude of ascending node: T^{-1}.
$\dot{\bar{\omega}}^{*}=$ mean rate of change of longitude of perigee: T^{-1}.
$B_{A}^{*}=$ mean rate of rotation of line of apsides; T^{-1}.
$\rho=$ distance $0 T$ to mass element $\mathrm{dm}: L$.
$\alpha=$ cosine of angle OOT; dimensionless.
$\beta=\rho / r ;$ dimensionless.
$\mathrm{P}_{\mathrm{n}}()=$ Legendre polynomial of degree n ; dimensionless.
$I_{x}, I_{y}, I_{z}=$ principal moments of inertia at $0 ; F I T^{2}$.
$a, b, c=$ direction cosines of 0 With respect to principal axes; dimensionless.
$A, B=$ semi axes of oblate earth; L.
$M=$ positive mass at $0 ; F T^{2} L^{-1}$.
$-m=$ negative mass on polar axis; $F T^{2} L^{-1}$.
$d=$ distance from $: 1$ to $-m: L$.
$n=m / M$; dimensionless.
$M_{\mathrm{E}}=M-2 m=$ mass of Earth; $F T^{2} L^{-1}$.

Figure 1 Details of orbit of Earth satellite. Figure la is looking south along axis of Earth: ${ }^{\text {Figure }}$ lb is looking alons line of nodes from ascending node A toward descending node D; Figure $1 c$ is true projection of orbit. P is the perigee point, 0 is the center of the Earth, and Q is the location of the satellite. Angle $A O B$ is a right angle. Ω is the longitude of the ascending node, ω is the argument of perigee, v is the true anomaly, and angles u and w are as indicated.

DISTRIBUTION LIST

Documents Department
General Library
University of California
Berkeley, California 94720
Lockheed-California Company
Centeral Library
Dept. 77-14, Bldg. 170, Plt. B-1
Burbank, California 91503
Naval Ordnance Test Station
China Lake, California
Attn: Technical Library
Serials Dept., Library
University of California, San Diego
La Jolla, California 92038
Aircraft Division
Douglas Aircraft Company, Inc.
3855 Lakewood Boulevard
Long Beach, California 90801
Attn: Technical Library
Librarian
Government Publications Roam
University of California
Los Angeles, California 90024
Librarian
Numerical Analysis Research
University of California
405 Hilgard Avenue
Los Angeles, California 90024
Chief Scientist
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena, California 91101
Camanding Officer and Director
U. S. Navy Electronics Lab. (Library)

San Diego, California 92152

General Dynamics/Convair
P.O. Box 1950

San Diego, California 92112
Attn: Engineering Library Mail Zone 6-157

Ryan Aeronautical Company
Attn: Technical Information Services
Lindbergh Field
San Diego, California 92112
General Electric Company
Technical Information Center P.O. Drawer QQ

Santa Barbara, California 93102
Library
Boulder Laboratories
National Bureau of Standards
Boulder, Colorado 80302
Government Documents Division University of Colorado Libraries
Boulder, Colorado 80304
The Library
United Aircraft Corporation 400 Main Street
East Hartford, Connecticut 06108
Documents Division
Yale University Library
New Haven, Connecticut 06520
Librarian
Bureau of Naval Weapons
Washington, D. C. 20360
George Washington University Library 2023 G Street, N. W.
Washington, D. C. 20006
National Bureau of Standards Library Room 301, Northwest Building Washington, D. C. 20234

Director
Naval Research Laboratory
Washington, D. C. 20390
Attn: Code 2027

University of Chicago Library
Serial Records Department
Chicago, Illinois 60637

Documents Department Northwestern University Library Evanston, Illinois 60201

The Technological Institute, Iibrary Northwestern University Evanston, Illinois 60201

Librarian
Purdue University
Lafayette, Indiana 47907

Johns Hopkins University Library
Baltimore
Maryland 21218

Martin Company
Science-Technology Library Mail 398
Baltimore, Maryland 21203

Scientific and Technical Information Facility
Attn: NASA Representative
P.O. Box 5700

Bethesda, Maryland 20014

Documents Office
University of Maryland Iibrary
College Park, Maryland 20742

The Johns Hopkins University
Applied Physics Laboratory
Silver Spring, Maryland
Attn: Document Librarian

Librarian
Technical Library, Code 245L Building 39/3
Boston Naval Shipyard
Boston, Massachusetts 02129

Massachusetts Institute of Technology
Serials and Documents
Hayden Library
Cambridge, Massachusetts 02139
Technical Report Collection
303A, Pierce Hall
Harvard University
Cambridge, Massachusetts 02138
Attn: Mr. John A. Harrison, Librarian
Alumni Memorial Library
Lowell Technological Institute
Lowell, Massachusetts
Librarian
University of Michigan
Ann Arbor, Michigan 48104
Gifts and Exchange Division
Walter Library
University of Minnesota
Minneapolis, Minnesota 55455
Reference Department
John M. Olin Library
Washington University
6600 Millbrook Boulevard
St. Louis, Missouri 63130
Librarian
Forrestal Research Center
Princeton University
Princeton, New Jersey 08540
U. S. Naval Air Turbine Test Station

Attn: Foundational Research Coordinator Trenton, New Jersey 08607

Engineering Library
Plant 25
Grumman Aircraft Engineering Corp.
Bethpage, L. I., New York 11714
Librarian
Fordham University
Bronx, New York 10458
U. S. Naval Applied Science Laboratory

Technical Library
Building 291, Code 9832
Naval Base
Brooklyn, New York 11251

Librarian
Cornell Aeronautical Laboratory 4455 Genesee Street Buffalo, New York 14225

Central Serial Record Dept.
Cornell University Library
Ithaca, New York 14850
Columbia University Libraries Documents Acquisitions
535 W. 114 Street
New York, New York 10027
Engineering Societies Library
345 East 47.th Street
New York, New York 10017
Library-Serials Department
Rensselaer Polytechnic Institute Troy, New York 12181

Librarian

Documents Division
Duke University
Durham, North Carolina 27706
Ohio State University Libraries
Serial Division
1858 Neil Avenue
Columbus, Ohio 43210

Commander

Philadelphia Naval Shipyard
Philadelphia, Pennsylvania 19112
Attn: Librarian, Code 249c
Steam Engineering Library
Westinghouse Electric Corporation
Lester Branch Postoffice
Philadelphia, Pennsylvania 19113

Hunt Library

Carnegie Institute of Technology
Pittsburgh, Pennsylvania 15213
Documents Division
Brown University Library
Providence, Rhode Island 02912
Central Research Library
Oak Ridge National Laboratory
Post Office Box X
Oak Ridge, Tennessee 37831

Documents Division
The Library
Texas A \& M University
College Station, Texas 77843
Librarian
LTV Vought Aeronautics Division
P.O. Box 5907

Dallas, Texas 75222
Gifts and Exchange Section
Periodicals Department
University of Utah Libraries
Salt Lake City, Utah 84112
Defense Documentation Center (DDC)
Cameron Station
Alexandria, Virginia 22314
Attn: IRS (20 copies)
FOREIGN COUNTRIES
Engineering Library
Hawker Siddeley Engineering
Box 6001
Toronto International Airport
Ontario, Canada
Attn: Mrs. M. Newns, Librarian
Exchange Section
National Lending Library for
Science and Technology
Boston Spa
Yorkshire, England
The Librarian
Patent Office Library
25 Southampton Buildings
Chancery Lane
London W. C. 2., England
Librarian
National Inst. of Oceanography
Wormley, Godalming
Surrey, England
Dr. H. Tigerschiold, Director
Library
Chalmers University of Technology Gibraltargatan 5
Gothenburg S, Sweden

```
Professor W. D. Baines
Department of Mechanical Engineering
University of Toronto
Toronto 5, Ontario
Professor W. E. Bleick
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940
Professor Leon Blitzer
Department of Physics
University of Arizona
Tucson, Arizona
Dr. F. T. Geyling
Bell Telephone Laboratories
Murray Hill, N. J.
Mr. D. G. King-Hele
Royal Aircraft Establishment
Farmborough, Hants (England)
Professor R. E. Roberson
Department of Engineering
University of California Los Angeles
Los Angeles, California }9002
```


Security Classification

(Security classification of tille, body of abstract and indexing annotation must be entered when the overall report is classifted)

ORIGINATINGACTIVITY (Comporate author)
Naval Postgraduate School Monterey, Califormia 93940

REPORT TITLE

An Elementary Derivation of the Principal Effects of the
Oblateness of the Earth upon the Orbits of Satellites.

- DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report/Research Paper 1967

AUTHOR(S) (Last name, first name, infial)

Brock, John E.

REPORT DATE 27 April 1967	$7 a$ TOTAL NO. OF PAGES $7 b$. NO. OF REFS 20 6
a. CONTRACT OR GRANT NO. b. PROJECT NO.	9a ORIGINATOR'S REPORT NUMBER(S) $\text { TR/RP No. } 76$
c. d	9 b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

Unlimited

SUPPL EMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

This paper will be presented at the Canadian Congress of Applied Mechanics Quebec, 26 May 1967.

General formulas for the first-order effects of the oblateness of the Earth upon the orbits of satellites were reported in 1957 by R. E. Roberson and by D. G. King-Hele. Their derivations employed methods which are unfamiliar to those not having studied the mathematics of astronomy. In this Technical Report/Research Paper No. 76, an elementary derivation is given for these useful and important results.

Security Classification

14	KEY WORD
	Angular momentum Earth Geopotential Node Oblate Oblateness Orbit Perigee Perturbation Potential Satellite Spheroid

Jull 05 .an

-Keep this card in the book pocket Book is due on the latest date stamped

TA7
.U62 Erock
no. 76 An elementary derivation of the principal effects of the oblateness of the earth upon the orbits of satel-
lites.

32768001614266 DUDLEY KNOX LIBRARY

